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With eye trackers gradually becoming personal wearable devices, gaze-based interaction will
become a relevant technique for wearable applications. However, it is a common belief that
high-resolution images and high frame rates are desirable to achieve the accuracy and precision
required for human interaction. Because of the high computational load, a wearable eye tracker
would have their batteries quickly drained out. In this paper we investigate how much process-
ing power can be saved by lowering these requirements, and still maintain the performance
adequate for human interaction. We have conducted an experiment using a head-mounted
Pupil Labs eye tracker. Our results from 10 participants show that accuracy and precision
remain below one degree of error for image resolution of 240 lines, and frame rates as low as
5 frames per second (FPS). Using this minimum setup, we estimate that power consumption
can be reduced by 90% compared to the eye tracker camera regular settings (480 lines and 30
FPS). We also propose an algorithm that successfully detects reading behavior in real-time at
5 FPS in order to demonstrate the usefulness of gaze data at such low rates.
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Introduction

Traditional gaze-based computer applications were devel-
oped for desktops (Jacob, 1990; Majaranta & Räihä, 2002).
However, with recent advances in head-mounted eye track-
ers, new opportunities have been created for control and in-
teraction using wearable computers.

Recent head-mounted eye trackers have become suffi-
ciently light and comfortable to be used in natural envi-
ronments. Current models such as the SMI Eye Tracking
Glasses and the Tobii Pro Glasses 2 provide accuracy lower
than 1o and frame rates above 60 Hz. Despite significant
evolution in the form factor, real-time eye tracking is still a
challenge for mobile and wearable devices, so data is gen-
erally stored to be processed later. For wearable gaze-based
interaction though, having such a heavy job running all the
time would quickly consume all the power stored in the de-
vice’s battery.

The use of low resolution cameras can reduce the com-
putational power needed to segment the pupil and estimate
the point-of-gaze (PoG). Processing less frames per second
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can also reduce power consumption. Nonetheless, the effects
of lowering image resolution and frame rate on PoG esti-
mation and usability of gaze-based interfaces have not been
properly investigated. In this paper we present the results
of an experiment that shows how the Pupil gaze estimation
algorithm (Kassner, Patera, & Bulling, 2014) performs with
low resolution images and video frame rates. To demonstrate
the feasibility of gaze-based interaction in such conditions,
we have developed an algorithm for reading detection in low
frame rates that outperforms the state of the art.

Methods

Ten volunteers (undergraduate and graduate students, one
female) took part in the experiment. All had normal or
corrected-to-normal vision using contact lenses. The study
was conducted in a room with regular illumination and no
sunlight incidence, using a binocular head-mounted Pupil
eye tracker (Kassner et al., 2014). Data was collected using
the Pupil Labs software while participants were seated in a
fixed chair at about 55 cm from a 22” monitor.

The task consisted of looking at 17 visual targets (concen-
tric rings presented in random order) displayed on the moni-
tor. Nine targets were used for calibration and all 17 targets
were used for error computation. The Pupil eye tracker uses a
simple feature based gaze estimation technique, but different
and more sophisticated approaches can also be found in the
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literature (Hansen & Ji, 2010; Coutinho & Morimoto, 2013;
Z. Zhang & Cai, 2014; X. Zhang, Sugano, Fritz, & Bulling,
2015).

Four 2D markers were placed at each corner of the moni-
tor so it could be reliably detected on the scene image. Error
was computed as the difference from the scene point esti-
mated by the Pupil algorithm and the projection of the target
on the scene image computed with the markers. For each
target we recorded 2 seconds of video, which roughly cor-
responds to 60 frames for the eye and scene cameras. The
two eye cameras had a resolution of 480 lines and the scene
camera, 720 lines.

Two different conditions were used to collect data: the
baseline and the central conditions. In the baseline, par-
ticipants used a chin-rest to keep their head steady at about
55 cm from the monitor. For the central condition, partici-
pants did not use the chin-rest and could perform natural head
movements to look at the targets. Recorded eye videos were
down-sampled to 15, 10, and 5 frames per second (FPS), and
the resolutions were reduced to 240, 120, and 60 lines. Then
an off-line adapted version of the Pupil Labs software was
used to process each video combination of FPS × resolution.
The scene video remained at 720 lines for all conditions.

Results

Results show that accuracy and precision are not affected
using an eye image with 240 lines instead of the camera’s
full 480 lines. Furthermore, with 240 lines the gaze estima-
tion error remains below 1o, as it can be seen in Table 1.
Another interesting result is that accuracy and precision are
not affected when FPS are reduced from 30 Hz to 15, 10,
and 5 Hz. Additionally, there was no difference between the
central and baseline conditions, which is explained by the
fact that the Pupil eye tracker estimates the point-of-gaze by
mapping the pupil center to the detected monitor on the scene
image, thus being robust to some head movement.

For video resolutions of 120 and 60 lines, mean error in
gaze estimation was between 8o and 25o for all FPS, probably
due to the fact that pupil contours were hard to detect at such
resolution, lowering the overall confidence value provided by
the Pupil-Labs algorithm. Hence, given the larger error and
standard deviation, we did not include these results.

Power consumption was estimated through an experiment
using the psutil Python library. During this estimation, only
one of the processor cores (Intel Core-i7, 1.90 GHz) was ac-
tivated. The processor was configured to operate statically at
its maximum frequency. The Pupil algorithm was evaluated
on a set of videos with the same content (eye moving to 17
positions) but with different image resolutions (480 and 240)
and FPS (30, 15, 10, and 5). For the 240-line resolution,
we found that, compared to 480 lines at 30 FPS, power con-
sumption was reduced from 72% (30 FPS) to 90% (5 FPS).

Table 1
Gaze estimation error for the center and baseline conditions.

Center Baseline

FPS/Lines 480 240 480 240

30 0.75±0.45 0.78±0.49 0.83±0.7 0.81±0.55

15 0.76±0.46 0.77±0.47 0.84±0.75 0.81±0.55

10 0.75±0.44 0.77±0.47 0.82±0.64 0.80±0.54

5 0.75±0.44 0.77±0.50 0.86±0.83 0.79±0.55

Gaze interaction

With lower frame rates, detection of fixations and sac-
cades might be affected, compromising gaze-based interac-
tion. At 5 Hz, saccades are practically untraceable and fix-
ations require longer periods of data acquisition to be rec-
ognized. Nonetheless, we argue that some behaviors with
well-established patterns such as reading could still be used
as an interaction mechanism in these conditions to mediate
user tasks in a wearable context. Thus, we developed an al-
gorithm (Elmadjian, Kurauchi, & Morimoto, 2016) for real-
time reading detection and performed an experiment with 9
participants in which our algorithm showed a true positive
rate above 90% and accuracy of 86% at 5 Hz. This was pos-
sible due to a pattern-matching strategy that considered both
spatial differences and temporal displacements in fixations.

Conclusions

In this paper we have presented preliminar results about
the effect of using lower image resolution and frame rates
on gaze estimation accuracy and precision for the Pupil eye
tracker. The experimental results showed that, by using an
eye image with 240 lines, both accuracy and precision are
similar to the original resolution of 480 lines, with an error
below 1o of visual angle. We have also found that processing
only 5 FPS did not affect accuracy and precision. By combin-
ing a smaller image resolution and FPS, it might be possible
to save up to 90% of processing power in the wearable eye
tracker. To demonstrate that data at low rates is still useful
for interaction, we have shown that it is possible to detect
reading behavior at only 5 Hz, though for some interaction
purposes that require low latency, such as eye typing, 10 to
15 Hz might improve user experience.
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